# Stable gait sequencing

In the last post, I described the newer gait engine which takes a desired command and produces a set of gait parameters. At that point, the gait engine needs to implement those gait parameters in a way that is stable with respect to disturbances and keeps the two legs properly out of phase with one another.

The gait variables that the gait selection procedure emits are as follows, each “leg” is actually a pair of legs.

• swing time: This is the amount of time between when a leg lifts off the ground, and when it lands again.
• one leg time: This is the amount of time spent with only a single leg on the ground.
• two leg time: The amount of time with both legs on the ground.
• flight time: The amount of time with no legs on the ground.

I’ve chosen to implement this for now with two controllable variables, when to pick up the next leg to begin its swing phase and how far out to place the foot when landing. When in flight, the swing time is fixed to be exactly what the gait engine selected. When on the ground, the leg position and velocity are fixed in the world frame to match the current command. This results in the other three parameters, one leg, two leg, and flight time, being approximated as best as possible.

## When to lift

When there is no flight time, then the heuristic for when to lift the leg is identical to that described in “Balancing gait in 2D“. The trailing leg is lifted when the opposing leg is half of a swing time away from crossing the balance point.

When there is a flight time present, we have to add a corrective term to that heuristic, otherwise the two legs can lose their phase synchronization. If the correct out of phase relationship is being held, then the leg will be lifted when the alternate leg is in flight and has the “flight time” remaining in its swing cycle. The correction for that leg is calculated as a difference in time around that point such that the correction is positive before that point and negative after scaling in a linear manner. This has the desired property that the two legs are kept out of phase, without enforcing a strict leg cycle time.

## Where to place

Once again, when there is no flight time, the placement location is the same as before. When there is a flight time, then the placement location is even simpler. Now it is just a position forward of the balance point by one half of the “one leg time”. This results in the machine spending roughly half of its time on each side of the balance point.

## Further work

I’ve got one further enhancement to this technique to describe, at which point I think I’ll have basically exhausted its promise. Further advances will likely have to come from using an optimization based controller rather than a heuristic driven approach.